
 1 

Comprehension and Prediction of 
Astronaut Dynamics 

D. Paul Benjamin     Damian M. Lyons 
John Vincent Monaco    Fordham University 
Yixia Lin     340 JMH, 441 E. Fordham Rd. 
Pace University     Bronx, NY 10458 
1 Pace Plaza     718-817-4485 
New York, NY  10038    dlyons@fordham.edu 
212-346-1012 
benjamin@pace.edu 

 
Abstract—A robot collaborating with astronauts needs to 
comprehend and predict their movements. We present an 
approach to perceiving and modeling astronaut movement 
using a 3D virtual world. The robot's visual data is 
registered with the virtual world to construct a model of the 
astronauts' dynamics and predict future motions using a 
physics engine. This enables the robot to interact more 
naturally with the humans and to avoid potentially 
disastrous mistakes. 

This approach is implemented within a cognitive 
architecture equipped with a learning mechanism. This 
enables the robot potentially to learn to classify behaviors 
more quickly and accurately with experience.1  

We present previous work with simple objects and 
preliminary experiments with basic human movements 
including sitting, standing and turning. 

1. INTRODUCTION 
A truly cognitive architecture has not yet been implemented 
in robotics. Robots have been programmed to perform 
specific tasks such as mowing the lawn or navigating in the 
desert, and these accomplishments can be impressive, but 
robots still cannot act autonomously to choose tasks and 
devise ways to perform them. Even when performing their 
allotted tasks, they lack flexibility in reacting to unforeseen 
situations. Currently, the design of important perceptual and 
decision-making structures is done by the programmers 
before the robot begins its task. The semantics for the 
symbols and structures the robot uses is determined and 
fixed by these programmers. This leads to fragmented 
abilities and brittle performance. The robots cannot adapt 
their knowledge to the task, cannot solve tasks that are even 
slightly different from those they have been programmed to 
solve, cannot communicate effectively with humans about 
their goals and performance, and just don’t seem to 
understand their environment. This is a principal stumbling 
block that prevents robots from achieving high levels of 
performance on complex tasks, especially tasks involving 
interaction with people. 

The ADAPT project (Adaptive Dynamics and Active 

 
1978-1-4244-7351-9/11/$26.00 ©2011 IEEE. 

Perception for Thought) is a collaboration of three 
university research groups at Pace University, Brigham 
Young University, and Fordham University that is building 
a robot cognitive architecture that integrates the structures 
designed by cognitive scientists and linguists with those 
developed by robotics researchers for real-time perception 
and control. ADAPT is under development on Pioneer 
robots in the Pace University Robotics Lab and the Fordham 
University Robotics Lab. Publications describing ADAPT 
are [1, 2, 3, 4].  

ADAPT models the world as a network of concurrent 
schemas, and models perception as a problem solving 
activity. Schemas are represented using the RS (Robot 
Schemas) language [8,9], and are activated by spreading 
activation. RS provides a powerful language for distributed 
control of concurrent processes. Also, the formal semantics 
of RS [10] provides the basis for the semantics of ADAPT's 
use of natural language. We have implemented the RS 
language in Soar, a mature cognitive architecture originally 
developed at Carnegie-Mellon University and used at a 
number of universities and companies. Soar's subgoaling 
and learning capabilities enable ADAPT to manage the 
complexity of its environment and to learn new schemas 
from experience.  

2. THE ADAPT ARCHITECTURE  

Our approach is fundamentally different from other projects, 
which typically attempt to build a comprehensive system by 
connecting modules for each different capability: learning, 
vision, natural language, etc. Instead, we are building a 
complete cognitive robotic architecture by merging RS 
[8,9], which provides a model for building and reasoning 
about sensory-motor schemas, with Soar [5], a cognitive 
architecture that is under development at a number of 
universities. RS possesses a sophisticated formal language 
for reasoning about networks of port automata and has been 
successfully applied to robot planning. Soar is a unified 
cognitive architecture [7] that has been successfully applied 
to a wide range of tasks. 

Soar’s model of problem solving utilizes a single 
mechanism of subgoaling and chunking to explain human 
problem solving performance; utilizing Soar as the basis of 



 2 

ADAPT permits us to unify the mechanisms underlying 
perception, language and planning. Furthermore, it permits 
us to explore possible interrelationships between learning in 
these areas, e.g. how learning language and learning 
perception may be related. Finally, it permits us to test our 
architecture on robotic versions of well-known cognitive 
tasks and explore how robot learning might be related to 
human learning. 
 

3. ROBOT SCHEMAS 
 

ADAPT’s representation of dynamic behaviors is based on 
the RS (Robot Schemas) language [8,9]. RS is a language 
with a formal model of robot computation that is based on 
the semantics of networks of port automata [10]. A port 
automaton (PA) is a finite-state automaton equipped with a 
set of synchronous communication ports. 

RS builds a network of sensory-motor schemas to model the 
dynamics of both the robot and the environment. A schema 
is an organized network of actions (abstract and/or 
concrete), percepts, words, facts and beliefs about some 
aspect of the world. Schemas also contain explicit 
qualitative temporal information, e.g. about intervals of time 
during which an action must take place. The schema relates 
these components to each other and to other schemas. 

For example, the schema for a table would contain various 
images of tables, and would connect them to facts about 
tables, such as their typical size, and to actions that typically 
are performed with tables, such as eating at one (which is 
another schema). The table schema would be connected to 
the schemas for chairs, dining rooms, conference rooms and 
many other relevant concepts. 

One of the unique advantages of RS is its formal semantics. 
Each schema has an associated port automaton that defines 
the semantics of the schema. ADAPT explicitly constructs 
this PA for each schema and attaches it to the schema. The 
PA performs two important functions.  

First, it provides the basic semantics for the use of natural 
language. States in the PA provide the semantics for 
relations and predicates (adverbs and adjectives). 
Transitions between the states provide the semantics for 
verbs. 

Second, it enables ADAPT to synthesize hierarchies of 
schemas by decomposing automata. Benjamin6 has 
developed an algebraic method of factoring an automaton's 
associated semigroup. This method is applied in a 
straightforward way to PAs, factoring each PA into a 
collection of simpler PAs and decreasing the cost of 
perception and action. 

A large body of work in intelligent systems employs similar 
notions of schema. Arbib1 presents a comprehensive theory 
of schemas. 

ADAPT uses schemas by instantiating them to create 
schema instances that are connected to each other to form a 
network. Over time, ADAPT maintains this network, 
monitoring its behavior and adding schema instances and 
removing old ones as its goals and the environment change. 

A network of processes is typically built to capture a 
specific robot sensory-motor skill or behavior: sensory 
processes linked to motor processes by data communication 
channels and sequenced using process composition 
operations. 

For example, the following RS statement defines the i-th 
joint of a robot in terms of three sub-units, which are 
connected by connection map that connects similarly named 
output and input ports: 

 
       Jointi(s)() = [Jposi()(x) | Jseti(s, x)(u) | Jmoti(u)() ] 

 
Jposi()(x) continuously reports the position of joint i on 

output port x 
Jmoti(u)() accepts a signal on input port u and applies 

it to the actuator of joint i 
Jseti(s, x)(u) accepts a set-point on input port s and 

iteratively inputs a joint position on 
port x and outputs a motor signal on port u to drive the 

joint position to the set-point 
 

 
This RS schema can then be used as a sub-unit of a guarded 
move schema that is higher in the hierarchy: 
 

Touchi = [Tacti()(v) |Gmovei(v)(y) | Jointi(y)() ] 
 

Tacti reports on tactile contact on the i-th join on its port v. 
    

Gmove increments the setpoint of the joint actuator as long 
as it gets a no-contact signal on port v. 

    
Touchi implements a guarded move of the i-th link. 

RS process composition operations are similar to the well-
known CSP algebraic process model. However, unlike CSP, 
in RS the notation can be seen as simply a shortcut for 
specifying automata; a process is a port automaton, and a 
process composition operation is two automata connected in 
a specific way. Composition operations include sequential, 
conditional and disabling compositions. To analyze a 
network of processes, it is necessary to calculate how that 
network changes as time progresses and processes terminate 
and/or are created. This is the process-level equivalent of 
the PA transition function, combined with the axioms that 
define port-to-port communication. This Process Transition 
function can be used to analyze the behavior of RS 



 3 

networks. 

RS has been used successfully in industrial settings for 
applications such as kit assembly. RS thus provides a 
mature system for robust, real-time distributed control. A 
short video showing RS controlling a robot arm and camera 
to track and grasp a moving object is available at 
http://csis.pace.edu/robotlab/clips/puma.avi. 

 
RS and Soar 

RS provides a powerful representational language for the 
system's dynamics, language and percepts; however, RS 
does not provide a mechanism for synthesizing the 
dynamics. Furthermore, RS lacks demonstrated cognitive 
plausibility, and in particular lacks a learning method. 

We have implemented RS in Soar to take advantage of 
Soar's cognitively plausible problem-solving and learning 
mechanisms. Soar uses universal subgoaling to organize its 
problem solving process into a hierarchy of subgoals, and 
uses chunking to speed and generalize that process.  
Universal subgoaling permits Soar to bring all its 
knowledge to bear on each subgoal. Chunking stores 
generalized preconditions for search control decisions, so 
that in future tasks similar search control decisions are made 
in a single step. 

ADAPT's hierarchy of schemas is attached to the top-level 
state in Soar. ADAPT uses Soar's universal subgoaling to 
create its hierarchy of schemas, via operators that select, 
instantiate and interconnect schemas. This permits Soar's 
chunking method to learn how to build, monitor and modify 
networks of schemas. 

General schemas are kept permanently in working memory, 
so that they function as a kind of declarative memory. Each 
schema is linked to other schemas that are relevant, e.g. 
tables are connected to chairs. This library of schemas in 
working memory that can be instantiated and activated is 
similar to the declarative memory in which ACT-R stores its 
chunks. We follow the example of ACT-R and permit 
ADAPT to create links between schemas to reflect 
relationships between them, such as “is a generalization of” 
and “is the opposite of”, as well as activation links labeled 
by weights that can be used by spreading activation in a 
manner similar to ACT-R. 

Schemas have input ports and output ports. The ports of 
schema instances are connected to create ADAPT's network. 
Schemas can be decomposed into an assemblage of schemas 
that represent the world in more detail. Such assemblage 
schemas are attached to their parent schemas, creating a 
hierarchical structure that represents the world at varying 
granularities. Schemas that can be directly carried out by 
our Pioneer robot's Aria software possess an implementation 
attribute that contains the robot commands. 

Each schema instance in the hierarchy has a weight and a 
priority, which are used by ADAPT to compute what the 

robot will actually do. Unlike Soar and other cognitive 
architectures, ADAPT does not select a single schema to 
execute on the robot. Instead, all active schemas that possess 
implementations are blended by ADAPT's resolver to create 
the actions actually executed on the robot platform. 
Blending involves weighting each schema implementation 
by its weight, adding together weighted implementations of 
equal priority, then disabling lower-priority actions if they 
contradict higher-priority actions. 

For example, suppose a "move-forward" schema and a 
"turn-right" schema both have equal priority, with "move-
forward" weighted by 0.9 and "turn-right" weighted by 0.1". 
The implementation of "move-forward" is for both wheels 
to move at speed 100, and the implementation of "turn-
right" is for the right wheel not to move and the left wheel 
to move at speed 100. Then the blend of these two schemas 
will move the left wheel at speed 100 and the right wheel at 
speed 90, resulting in a slight angling to the right. If another 
move schema has a lower priority, it will be disabled. If 
another schema with a lower priority does not contradict the 
moves, e.g. a schema that tilts the camera, then it will be 

executed concurrently. 

ADAPT subgoals in the same manner as Soar, but 
subgoaling does not necessarily choose one schema, but 
instead assigns weights for blending. Choosing one schema 
to execute is simply making one schema's weight 1 and all 
others' weights 0.  

ADAPT's chunking mechanism is that of Soar. It creates a 
new rule (chunk) that summarizes preconditions for a 
subgoal's result. If the subgoal is selecting, instantiating or 
removing a schema, then the chunk will perform the 
operation in a single step. If the subgoal operates on 
multiple schemas, then the chunk will perform all the 
schema operations at once; in this way ADAPT can learn 
truly concurrent operations. For example, a subgoal may be 
to keep an object in focus while turning right. ADAPT can 
decide to instantiate a schema to turn the cameras left while 

SoarRobot 

RS/Soar Robot 
Server 

Ogre3D 

Vision  
System  
(OpenCV) 

Pioneer Robot 

GUI 

Figure 1. ADAPT’s structure. 
 



 4 

it is running a schema to turn right. The decisions to 
instantiate and start both schemas will appear in one chunk, 
thus encoding distributed, concurrent control. 

Thus, ADAPT’s approach to modeling behaviors is to learn 
port automata from observed behaviors. The methods of 
learning automata are based on well-known methods of 
inductive inference of automata. 

Soar manipulates a hierarchy of problem spaces, and the 
formal semantics of RS consists of a hierarchy of port 
automata. We have merged these architectures in a 
straightforward way by implementing each RS schema as a 
Soar problem space. This is done by specifying the state 
transitions of each schema's port automaton in Soar. 

Merging RS and Soar in this way combines their strengths. 
The strengths of RS include its formal mechanism for 
combining sensing and motion, its ability to reason about 
the temporal behavior of schemas, and its combination of 
deliberative planning and reactive behavior. Its weaknesses 
are the lack of a synthesis mechanism for autonomous 
formation of sensors or actuators, and the lack of a model 
for implementation of cognitive abilities such as learning 
and language. 

Soar provides an integrated cognitive model with a full 
range of cognitive abilities, including perception, 
deliberative planning, reaction, natural language, learning, 
and emotion. But Soar lacks parallelism and a temporal 
mechanism, which severely hampers its usefulness in 
robotics.  

By integrating RS and Soar, we have created an architecture 
to: 

• process a wide range of modes of perceptual input, 
• provide a complete range of cognitive abilities, 

including language and learning, 
• reason about time and resources, 
• implement parallel, reactive behaviors, and 
• learn new high-level sensors and behaviors. 

4. COMPREHENSION BY VISUALIZATION  
The central goal of our work is to develop effective methods 
for robots to comprehend their environment. Our approach 
models comprehension as a process of trying to recreate the 

observed dynamics by hypothesizing various sets of goals 
and beliefs for the agents, generating their dynamics based 
on these assumptions and comparing it with the observed 
dynamics. This knowledge-intensive approach to 
comprehension has a history within AI and in particular in 
machine learning. 

We have extended this approach to apply to comprehension 
of all observed behaviors, including motion and speech, 
because we view language comprehension as a special case 
of behavior comprehension. To say it the other way around, 
we believe that comprehension of non-speech behaviors is 
necessary for language comprehension. This necessity stems 
from two causes. The first is that the semantics of many 
words (especially verbs) requires comprehension of the 
activity they denote. The second is that speech is typically 
enhanced with many non-verbal actions, such as hand 
movements, facial expressions and postures. 

Furthermore, we believe that the comprehension requires 
visualization. We view visualization as consisting of both a 
perceptual component and a reasoning component. The 
perceptual component is performed using the same 
perceptual mechanism that the robot uses to perceive its 
environment; the difference is that visualization perceives a 
simulation of the environment. Visual reasoning 
manipulates and superimposes representations that consist 
of a combination of symbolic knowledge and 3D 
animations. 

Comprehension by generation requires the robot to be able 
to create different situations in which it can generate 
behaviors of robots, people and physical systems, and 
perceive the results of these behaviors. This requires 
implementing a virtual world that the robot can control.  

ADAPT’s virtual world is a multimedia simulation platform 
capable of realistic simulations of physical phenomena. It 
combines the various forms of map information found in 
most robots: topological, metric and conceptual information. 
ADAPT completely controls this virtual world, and can 
create arbitrary objects and behaviors in it, including 
nonexistent objects and behaviors that were not actually 
observed. Central to ADAPT’s use of its virtual world is its 
ability to view these constructions from any point. This 
enables ADAPT to create visual representations with 
desired properties. 

This approach to visualization is very different from 
previous work on reasoning about spatial relationships. 
ADAPT does not just turn spatial relationships into 
symbolic terms to be used in reasoning, but instead can 
reason visually about spatial relationships by constructing 
instances of those relationships, viewing them from various 
angles, and superimposing them. 

In the current implementation, ADAPT's world model is the 
Ogre3D open source gaming platform 
(http://www.ogre3d.org). Ogre gives the robot the ability to 

       Soar   RS 
Figure 2. Soar problem spaces implement RS port 

automata. 
 



 5 

create a detailed and dynamic virtual model of its 
environment, by providing sophisticated graphics and 
rendering capabilities together with a physics engine based 
on the PhysX physics engine. Ogre models a wide variety of 
dynamic environments, including modeling other agents 
moving and acting in those environments. 

ADAPT uses this virtual world in a novel way. Typical 
robotics architectures connect their sensory mechanisms to 
their world models, so that sensory data is processed and 
modeled in the world model. The reasoning engine then 
operates on the world model to plan the robot’s behaviors. 
This type of architecture treats perception as a separate 
process from the central reasoning, and typically the 
implementation reflects this, e.g. a computer vision module 
processes the vision data and puts symbolic representations 
of the recognized objects and their relationships in the world 
model, and the reasoning engine then manipulates these 
symbols to plan and learn. The reasoning engine does not 
process the sensory data. 

In contrast, ADAPT’s virtual world is not connected to its 
sensory processes. ADAPT’s sensory data is placed directly 
in the reasoning engine (after some low-level processing); 
the reasoning engine’s principal task in ADAPT is to reason 
about how to model the data. It does this in the following 
way: 

It creates virtual entities and behaviors in Ogre. 

It senses in the virtual world, using the same 
position and orientation as in the real world, and 
using the same sensors. For example, if ADAPT 
is modeling visual data, it grabs graphics input 
from Ogre, and if it is modeling sonar data, it 
grabs distance data from Ogre in the directions of 
the actual sonars. 

It compares the virtual sensory data with the real 
sensory data, using a least-squares measure to 
find the degree of disagreement. 

The reasoning engine searches alternative combinations of 
virtual entities and behaviors to attempt to minimize the 
measured disagreement. In this way, perception becomes a 
problem-solving process. This enables all the knowledge of 
the system to be brought to bear on perception, and unifies 
the reasoning and learning processes of problem solving 
with those of perception. 

This search can be long and expensive; for this approach to 
comprehension to be practical, an effective speedup learning 
mechanism is required to store the results of this search. 
ADAPT contains a knowledge compilation method that 
stores generalized results of each successful search. One of 
the main research goals of our project is to quantify the 
effectiveness of this approach. 

Visualization is also used in ADAPT for predictive vision: 
the robot predicts what it expects to see based on its virtual 
world and pays attention only to significant differences. 
This part of the project is detailed in [2]. 

5. PREDICTIVE VISION  
As an illustration of the use of this world model, let us 
consider ADAPT's novel approach to visual comprehension 
of its environment. ADAPT's vision system consists of two 
main components, a bottom-up component that is always 
on, and a top-down goal-directed component controlled by 
RS/Soar.  

The bottom-up component component is simple and fast. It 
does this by not producing much detail. The idea is for it to 
produce a basic stereo disparity map, a coarse-grained 
image flow, and color segmentation in real time. It runs on 
the robot's onboard computer using Intel’s open vision 
library, and segments the visual data from the robot's two 
framegrabbers. These "blobs" are transmitted together with 
stereo disparity data and optical flow to the offboard PC that 
is running RS/Soar, where it is placed into working 
memory. This component is always on, and its output is 
task-independent.  

The top-down component executes the more expensive 
image processing functions, such as object recognition, 
sophisticated image flow analysis, and application of 
particular filters to the data. These functions are called in a 
task-dependent and goal-dependent manner by RS/Soar 
operators. This greatly reduces their frequency of 
application and speeds the operation of the vision system 
significantly. 
 
These two components are not connected to each other; 
instead, the output of the bottom-up component is used by 
RS/Soar to determine when to call the top-down operations. 
RS/Soar compares the bottom-up output to the visual data 
predicted by the mental model. 

The mental model can display the view that the virtual copy 
of the robot "sees" in the virtual environment. The output of 
this graphics "camera" in Ogre is segmented and placed into 
RS/Soar's working memory, together with distance 
information and motion information from the mental model. 
Soar operators test for significant differences between the 
expected view and the actual view, e.g. the appearance of a 
large new blob or a large change in optical flow. Any 
significant difference causes an operator to be proposed to 
attend to this difference.  

For example, if a new blob appears, an operator will be 
proposed to look at this blob and try to recognize it. If this 
operator is selected (if there is nothing more important to do 
at the moment) then RS/Soar will instruct the robot to turn 
its cameras towards this blob, and then call its recognition 
software to process the rectangular region of the visual field 



 6 

that contains the blob.  

Once the object is recognized, a virtual copy is created in 
Ogre. The object does not need to be recognized again; as 
long as the blobs from the object approximately match the 
expected blobs from Ogre, ADAPT assumes it is the same 
object. Recognition becomes an explicitly goal-directed 
process that is much cheaper than continually recognizing 
everything in the environment. The frequency with which 
these expensive operations are called is reduced, and they 
are called on small regions in the visual field rather than on 
the whole visual field. 

Thus, ADAPT’s vision system spends most of its time 
verifying hypotheses about its environment, instead of 
creating them. The percentage of its time that it must spend 
attending to environmental changes depends on the dynamic 
nature of the environment; in a relatively static environment 
(or one that the robot knows well from experience) there are 
very few unexpected visual events to be processed, so visual 
processing operators occupy very little of the robot’s time. 

Another advantage of this approach to visual comprehension 
is that it opens the possibility of learning recognition 
strategies. 

Figure 3 shows the block diagram of our vision system 
[11,12]. The real and synthetic images of the scene as 
viewed by the robot are compared. If the scenes are 
considered the same but from different viewpoints, then the 
viewpoint of the camera in the simulation is changed, and 
the simulation generates an image taken by the camera at 
the new location. If an unexpected object is seen in the real 
image, an object is introduced at the corresponding position 
in the simulated scene. The region of the real image 
responsible for the difference is used as video texture on the 
object and a new synthetic image generated.  The 
information on whether there is no difference, an 
unexpected object, or an object missing between the image 
pairs is made available to action planning.  This loop of 
difference detection and simulation modification is used to 
keep the simulation synchronized to the observed 
environment. For prediction purposes, the simulation can be 
allowed to ‘fast forward’ in time, so that the expected 
position, for example, of a target can be calculated and then 
compared to observations.  
 

 
 
Figure 3: Block diagram of the loop integrating simulation and 
observation  
 
Fig. 4 shows a real (4(A)) and synthetic (4(B)) view of the 

same scene taken with the artificial camera at approximately 
the same location and orientation as the camera in the real 
scene.  
 

        
(A)                                                    (B) 

Figure 4: Real (A) and synthetic (B) views of the same 
scene from approximately the same position and orientation 

 
The view presented here is a close up of one wall of a room. 
The scene is also modeled graphically using OGRE. 
Sections of the graphical scene have been tiled with video 
texture manually extracted from Fig. 4(A). The use of video 
texture should make it easier to directly compare the real 
image and synthetic image to answer the following 
questions: 

1. Do they represent the same scene from the same 
viewpoint? 

2. Do they represent the same scene from slightly 
different viewpoints? 

3. Do they represent the same scene but with some 
number of different objects? 

4. Do they represent different scenes? 

6. RECOGNIZING DYNAMICS  
Given the above method that can compute the differences 
between individual frames from the real and virtual worlds, 
we apply it to recognizing dynamics using comprehension 
by visualization as described in Section 4. We begin with an 
initial rendering of the real world into the virtual world. 
With each successive frame grabbed from the real cameras, 
we generate hypothetical dynamics and create them in the 
virtual world and compare the predicted visual difference. 
The hypothetical dynamic that generates the closest 
observed match is selected as the observed dynamic. 

This process is repeated over a window of time (currently 
two seconds). If one hypothesis is closest at least half the 
time it is identified as the correct dynamic. 

Our initial experiments were the dynamics of balls: rolling 
bouncing, spinning. Each of these dynamics was associated 
with real parameters reflecting velocity and height (for 
bouncing). These experiments were encouraging (more than 
50% success rate of identification) but we found that the 
method of computing the differences included too much 
detail. We have begun work on a new method that relies 
more on higher level features of the scenes. 

Also, we found that the spherical symmetry of the balls 
created difficulties in recognizing motion. We believe that 
working with less symmetric objects will make the 



 7 

recognition more successful. 

We have begun a series of experiments on recognizing 
human movements: walking, standing, sitting, turning. 
Using hand-constructed schemas for each of these 
dynamics, we are currently learning classifications from 
comprehension through generation. This process is slow, an 
we are evaluating the effectiveness of Soar’s speedup 
learning to improve speed. 

7. CONCLUSION  
We have sketched the overall design of a new approach to 
the comprehension of dynamics that is part of a robotic 
cognitive architecture. A powerful 3D multimedia world 
model is used to render dynamics. This gives the robot the 
ability to visualize alternative evolutions of the dynamics 
and to classify them. The implementation of the basic 
components is complete. We have begun experiments on to 
evaluate the architecture. 

Further information on this work, including video clips 
showing the robot moving under the control of schemas and 
the use of the world model, can be downloaded from the 
website for the Pace University Robotics Lab: 
http://csis.pace.edu/robotlab 

REFERENCES  
[1] Benjamin, D. Paul, Damian Lyons and Deryle Lonsdale, 

“Embodying a Cognitive Model in a Mobile Robot”, 
Proceedings of the SPIE Conference on Intelligent 
Robots and Computer Vision, Boston, October, 2006. 

[2] Benjamin, D. Paul, Damian Lyons and Thomas 
Achtemichuk,  “Obstacle Avoidance using Predictive 
Vision based on a Dynamic 3D World Model”, 
Proceedings of the SPIE Conference on Intelligent 
Robots and Computer Vision, Boston, October, 2006. 

[3] Benjamin, D. Paul, Damian Lyons and Deryle Lonsdale, 
"Designing a Robot Cognitive Architecture with 
Concurrency and Active Perception", Proceedings of the 
AAAI Fall Symposium on the Intersection of Cognitive 
Science and Robotics, Washington, D.C., October, 2004. 

[4] Benjamin, D. Paul, Damian Lyons and Deryle Lonsdale, 
" Cognitive Robots: Integrating Perception, Action and 
Problem Solving in Behavior-Based Robots", AAMAS-
2004 Proceedings, pp. 1308-1309, 2004. 

[5] Laird, J.E., Newell, A. and Rosenbloom, P.S., “Soar: An 
Architecture for General Intelligence”, Artificial 
Intelligence 33, pp.1-64, 1987. 

[6] Lyons, D.M. and Hendriks, A., “Exploiting  Patterns of 
Interaction to Select Reactions”, Special Issue on 

Computational Theories of Interaction,  Artificial 
Intelligence 73, 1995, pp.117-148. 

[7] Newell, Allen, Unified Theories of Cognition, Harvard 
University Press, Cambridge, Massachusetts, 1990. 

[8] Lyons, D.M., “Representing and Analysing Action Plans 
as Networks of Concurrent Processes”, IEEE 
Transactions on Robotics and Automation, June 1993. 

[9] Lyons, D.M. and Arbib, M.A., “A Formal Model of 
Computation for Sensory-based Robotics”, IEEE 
Transactions on Robotics and Automation 5(3), Jun. 
1989. 

[10] Martha Steenstrup, Michael A. Arbib, Ernest G. Manes, 
Port Automata and the Algebra of Concurrent 
Processes. JCSS 27(1): 29-50, 1983. 

[11] "Integrating Perception and Problem Solving to Predict 
Complex Object Behaviors", by Damian M. Lyons, 
Mohamed Chaudhry, D. Paul Benjamin, Marius Agica, 
John Vincent Monaco, Conference on Multisensor, 
Multisource Information Fusion, SPIE, April 2010. 

[12] "Robot Video Tracking by Comparing Real and 
Simulated Video Scenes", by Damian M. Lyons and D. 
Paul Benjamin, Conference on Intelligent Robots and 
Computer Vision, SPIE, San Jose, Calif., January 2009. 

BIOGRAPHY 
Paul Benjamin is Professor of 

Computer Science and Director 
of the Robotics Lab at Pace University 
in New York City. After receiving his 
PhD from New York University, he 
worked in industry in robotics and as 
project leader in artificial intelligence  
and machine learning for six years 

before moving to academia. He has been the Principal 
Investigator on a number of grants from the NSF, AFOSR, 
ARO, DOE and DARPA. These projects include 
development of the ADAPT cognitive robot architecture in 
collaboration with Fordham University and Brigham Young 
University and the CSISM cybersecurity agent in 
collaboration with BBN Technologies. He holds patents in 
database security and intrusion detection. His research 
focuses on issues of problem solving and representation in 
cognitive architectures. He edited the first book in this area, 
"Change of Representation and Inductive Bias". He and his 
research group at Pace are developing cognitive agents in 
both robotics and cybersecurity. 
 

– 



 8 

 


